German Contact Help Login Register

Medulla Oblongata: Tracts and Nuclei

Contents

Overview

In continuing the discussion on the medulla oblongata, this article will focus on the nuclei and tracts that are found within it at different cross-sectional levels. Some clinical manifestation associated with damage to these tracts or their respective nuclei will also be addressed.

Posterior nucleus of vagus nerve - cross-sectional view

For clarity, the term nucleus (pl. nuclei) is used in reference to a collection of neuronal cell bodies within a particular area (e.g. nucleus of the CN XII). Tracts, on the other hand, refer to a collection of nerve fibers running to/from a particular target (e.g. spinocerebellar tracts running from the spinal cord to the cerebellum). The tracts and nuclei are 3D structures that can span multiple levels. Therefore, it is not uncommon for the same tract to be found in cross-section at the decussation of the pyramids and at the decussation of the medial lemnisci.

Recommended video: Brainstem
Brainstem and related structures.

The tracts can either be ascending tracts – sensory (afferent) fibers going from the spinal cord to higher brain centres; or descending tracts – motor (efferent) fibers coming from higher brain centres to the spinal cord. Remembering all the tracts can be a daunting task. A simple trick to remember where the tracts are running is to break the composite name into its respective parts (i.e. spino [spinal] – cerebellar [cerebellum]). The prefix tells where the tracts arise and the suffix tells where they will terminate or transition into another set of fibers.

Cross-section at the Decussation of the Pyramids

The gracile and cuneate nuclei are located in the posterior aspect of the medulla; each being just anterior to their respective fasciculi and bilateral to the posterior median sulcus.

Gracile nucleus - cross-sectional view

The fasciculi are continuations of the dorsal column of the spinal cord. As a result, they carry information regarding joint proprioception, tactile discrimination, and vibration sense. The nuclei house the second-order cell bodies connected to the fibers of the dorsal column-medial lemniscus pathway

Cuneate nucleus - cross-sectional view

The spinal nucleus of the trigeminal nerve and its associated tract are found posterolaterally in the medulla; with the tract being more posterior (i.e. closer to the surface of the medulla) than the nucleus. The tract carries nociceptive, light touch sensation and thermal information from the face via first-order general somatic afferent (GSA) neurons of CN V, CN VII, CN IX and CN X.

Spinal nucleus and tract of trigeminal nerve - dorsal view

This information is then conveyed to the spinal trigeminal nucleus, which happens to be a cranial continuation of the substantia gelatinosa (Rexed II) of the posterior grey horn of the spinal cord. The spinal trigeminal nucleus then gives off second-order neurons that decussate and form the ventral trigeminothalamic tract. These fibers eventually synapse at the ventral posteromedial nucleus (VPMN) of the thalamus.

The corticospinal fibers coming from the giant cells of Betz in Brodmann areas 6 (premotor cortex), 4 (precentral motor cortex), and 3-1-2 (post-central sensory cortex), give rise to the pyramids. Along the caudal route, a large amount of these fibers cross the midline to form the pyramidal decussation. Each bundle of fibers forms the contralateral lateral corticospinal tract in the posterolateral aspect of the lateral funiculus of the spinal cord. These fibers have the responsibility of regulating contralateral voluntary motor activity and as a result, the pyramidal decussation is also known as the great motor decussation.

Pyramidal decussation - cross-sectional view

The medial longitudinal fasciculus (MLF) is located laterally to the lateral corticospinal tract prior to its decussation. Similarly, the medial accessory olivary nucleus is also laterally to the lateral corticospinal tract at the point of decussation. The anterior and posterior spinocerebellar (conveying instinctive proprioception to the cerebellum) and the lateral spinothalamic tracts (nociception and thermal sensation to the ventral posterolateral nucleus of the thalamus) also continue ipsilaterally from the spinal cord through the medulla.

Medial accessory olivary nucleus - cross-sectional view

Cross-section at the Decussation of the Lemnisci

The medial lemniscus pathway acts as a bridge between the dorsal column and the ventral posterolateral nucleus of the thalamus. This tract is formed when the gracile and cuneate nuclei give off their internal arcuate fibers from their anterior surface.

Internal arcuate fibers - cross-sectional view

The internal arcuate fibers from the opposite side travel anteriorly – lateral to the central canal, hypoglossal nucleus and the medial longitudinal fasciculus. Then, they course medially (forming a geometric arc) and decussate as the medial lemnisci. The decussation occur posterior to the pyramid and medial to the inferior olivary nucleus.

Hypoglossal nucleus - cross-sectional view

Also lateral to the decussation of the lemnisci are the spinotectal tracts and the anterior and lateral spinothalamic tracts. Due to their proximity to each other, these fibers are referred to as the spinal lemniscus and are responsible for carrying pain, crude touch and temperature sensation. The spinal trigeminal nuclei and tracts, and posterior and anterior spinocerebellar tracts maintain their position as previously described.

Spinothalamic tract - cross-sectional view

Cross-section at the Level of the Olives

At the level of the olives, a few structures previously described persist in different locations, while additional structures are encountered. Since this area is closer to the base of the medulla, it is wider than the previous sections. Additionally, the central canal has journeyed posteriorly and widened into the fourth ventricle (which is covered here by the inferior medullary velum).

Reticular formation - cross-sectional view

The hypoglossal and dorsal vagal nuclei are located posteromedially (with the former being the most medial structure) in the medulla. The most medial structures (from posterior to anterior) are the medial longitudinal fasciculus, the tectospinal tract and the medial lemniscus. The reticular formation is placed deep in the medulla, anterior to the hypoglossal and dorsal vagal nuclei, lateral to the medial longitudinal fasciculus and tectospinal tracts and overlapping the nucleus ambiguous.

Nucleus ambiguus - cross-sectional view

Lateral to the dorsal vagal nucleus is the nucleus of tractus solitarius (solitary nucleus) and the medial vestibular nucleus. The inferior vestibular nucleus and the posterior cochlear nucleus are lateral to the medial vestibular and the solitary nuclei, but medial to the body of the inferior cerebellar peduncle.

Medial vestibular nucleus - cross-sectional view

The spinal trigeminal nuclei and tracts are medial to the inferior cerebellar peduncle while the anterior cochlear nucleus is anterior to it. The anterior spinocerebellar tract is laterally placed and located superficially, anterior to the exiting fibers of the CN X (between the inferior cerebellar peduncle and olive). The lateral spinothalamic tract is just medial to the anterior spinocerebellar tract, and lateral to the dorsal accessory olivary nucleus.

Anterior cochlear nucleus - dorsal view

The inferior olivary nucleus is a convoluted, C-shaped body that is deep to the olive. Its olivocerebellar fibers travel through the inferior cerebellar peduncle to enter in the cerebellar cortex and nuclei of the opposite side. It also acts as a relay station for the rubrocerebellar fibers (fibers from the red nucleus of the cerebellum).

Inferior olivary nucleus - cross-sectional view

In the anterior medial fissure, on the anteromedial surface of each pyramid is a small nucleus known as the arcuate nucleus. It projects arcuatocerebellar fibers that form the striae medullaris of the fourth ventricle.

Arcuate nucleus - cross-sectional view

Cross-section at the Pontomedullary junction

There are no significant changes in the arrangement of tracts and nuclei at this level. One noteworthy point, however, is that the posterior cochlear nucleus can be observed posterior to the inferior cerebellar peduncle.

Get me the rest of this article for free
Create your account and you’ll be able to see the rest of this article, plus videos and a quiz to help you memorize the information, all for free. You’ll also get access to articles, videos, and quizzes about dozens of other anatomy systems.
Create your free account ➞
Show references

References:

  • Fix, J. (2008). Neuroanatomy. 4th ed. Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins.
  • Snell, R. (2010). Clinical Neuroanatomy. 7th ed. Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins, pp.198-206, 217-218.

Author and Layout:

  • Lorenzo Crumbie
  • Catarina Chaves

Illustrators:

  • Posterior nucleus of vagus nerve - cross-sectional view - Paul Kim
  • Gracile nucleus - cross-sectional view - Paul Kim
  • Spinal nucleus and tract of trigeminal nerve - dorsal view - Paul Kim
  • Cuneate nucleus - cross-sectional view - Paul Kim
  • Pyramidal decussation - cross-sectional view - Paul Kim
  • Medial accessory olivary nucleus - cross-sectional view - Paul Kim
  • Internal arcuate fibers - cross-sectional view - Paul Kim
  • Hypoglossal nucleus - cross-sectional view - Paul Kim
  • Spinothalamic tract - cross-sectional view - Paul Kim
  • Reticular formation - cross-sectional view - Paul Kim
  • Nucleus ambiguus - cross-sectional view - Paul Kim
  • Medial vestibular nucleus - cross-sectional view - Paul Kim
  • Anterior cochlear nucleus - dorsal view - Paul Kim
  • Inferior olivary nucleus - cross-sectional view - Paul Kim
  • Arcuate nucleus - cross-sectional view - Paul Kim
© Unless stated otherwise, all content, including illustrations are exclusive property of Kenhub GmbH, and are protected by German and international copyright laws. All rights reserved.
Create your free account.
Start learning anatomy in less than 60 seconds.