German Contact How to study Login Register

Register now and grab your free ultimate anatomy study guide!

Sidebar ebook trimmed

Neurovascular Supply of the Kidney



The kidneys are bilateral, bean shaped organs that are situated retroperitoneally. The organs lie along the posterior abdominal wall, where they filter blood, maintain ionic homeostasis and produce urine. The body of the liver displaces the right kidney inferiorly, resulting in the left kidney being slightly superior to the right.

Recommended video: Kidney structure
Overview of the structure of the kidney.

Along the medial surface, there is a concavity known as the hilum. At this point, the renal arteries enter, and the renal veins and pelvis (beginning of the ureters) leave the kidney. The neural supply from both divisions from the autonomic nervous system also enters the kidney at the hilum. Lymphatic drainage from both the renal cortex (outer layer of kidney) and renal medulla (inner layer of kidney) go to the same group of nodes.

Arterial Supply

The abdominal aorta gives off many branches, including the renal arteries. The renal arteries branch off perpendicular to the abdominal aorta, travelling posterior to the renal veins, nerves and the pancreas.

Renal artery - ventral view

Subsequent to branching from the aorta, the renal artery enters the kidney at the hilum, where it divides into anterior and posterior branches. The posterior division goes on to supply the posterior region of the kidney, while the anterior branch divides further to produce apical, anterior superior, anterior inferior and inferior segmental arteries; each supplying their respective segments.

Anterior branch of renal artery - ventral view

At the level of the minor calyces, the branches of the anterior renal arteries further divides into interlobar arteries that course around the borders of the medullary pyramids. At the base of the pyramids, these arteries are referred to as arcuate arteries.

Interlobar arteries of kidney - ventral view

Finally, the arteries enter the nephrons (functional units of the kidneys) as the interlobular arteries, where afferent arterioles bring blood to the glomerulus to be filtered. It should be noted that these arteries neither anastomose nor have accompanying veins.

Interlobular arteries of kidney - ventral view

Capillary Network

As the afferent arterioles enter the glomerulus, they form an intricate network of communicating capillaries. The capillaries are lined by a unique fenestrated epithelium (each space being around 70 – 100 nm wide). The fenestration allows selective passage of smaller particles into the renal tubules and keeps larger blood cells in the vessels.

Afferent glomerular arteriole of kidney - histological slide

The capillaries leave the glomerulus as efferent arterioles, after which they form capillary beds around the nephron’s loop of Henle. In cortical nephrons (loop of Henle does not extend deep into the medulla), the capillary beds are called peritubular capillaries; while in juxtamedullary nephrons (loop of Henle extends deep into the medulla), the capillary beds are called vasa recta. These capillary beds facilitate blood pressure regulation and ionic homeostasis both passively and under hormonal influence.

Vasa recta of kidney - histological slide

Venous Drainage

As the capillaries leave the nephron, they condense to form interlobular veins. Similar to the branches of the renal arteries, the interlobular veins become arcuate veins at the base of the medullary pyramids, then interlobar veins. About five or six interlobar veins join together to form each renal vein. Unlike the branches of the renal arteries, the tributaries of the renal vein communicate with each other.

Renal vein - ventral view

Lymphatic Drainage

Superficial lymphatic vessels form a plexus under the renal capsule (thin layer covering the kidneys) known as the subcapsular lymphatic plexus. They, along with medullary lymph vessels, communicate with cortical lymph vessels that travel alongside interlobular, arcuate and interlobar arteries. The renal lymphatics then drain directly to the lumbar lymph trunks (which then drain to the thoracic duct and cisterna chyli) and to para-aortic nodes, including precaval, lumbar and postcaval nodes.


Both the sympathetic and parasympathetic divisions of the autonomic nervous system are responsible for innervating the kidneys. Thoracolumbar outflow from T10 to L1 provide vasomotor supply via the thoracolumbar splanchnic nerve, after synapsing at the renal and coeliac ganglia.

Left lesser splanchnic nerve - ventral view

Parasympathetic fibers from the vagus nerve as well as fibers from the intermesenteric plexus (S2 to S4) also innervate the kidneys. Afferent fibers conveying pain from the viscera travel along the sympathetic pathway. The afferent fibers that detect pain originating from kidney stones in the renal pelvis or calyces, travel via the coeliac plexus to the sympathetic trunk by route of the splanchnic nerves. The associated nausea and vomiting may result from afferents travelling along the vagal route.

Vagus nerve - lateral-left view

Clinical Aspects

Renal infarction subsequent to occlusion of any of the arterial branches supplying the kidneys is of concern considering that there are no communicating arterial branches. Additionally, the segmental branches of the renal artery are terminal arteries. Furthermore, the medulla is also susceptible to ischemic necrosis because its arterial supply is derived from the efferent arterioles exiting the glomerulus. Therefore, any form of vasculitis can further reduce the already, remarkably low oxygen content of the medulla.

Clinicians should take into account the possibility that some cases of hypertension could be resultant of renal artery stenosis. The narrowing of the renal arteries results in ischemia. The kidneys attempt to correct this by producing excess renin, which causes an elevation in blood pressure. This pathology can be corrected surgically.

Also of clinical significance are sickle cell associated nephropathies. Individuals with sickle cell disease or the trait are both susceptible to renal insults related to this disease. Haematuria and hyposthenuria (excreted urine with low urea concentration) are typical anomalies associated with the disease.

Get me the rest of this article for free
Create your account and you'll be able to see the rest of this article, plus videos and a quiz to help you memorize the information, all for free. You'll also get access to articles, videos, and quizzes about dozens of other anatomy systems.
Create your free account ➞
Show references


  • Hansen, J., & Netter, F. (2014). Netter's Atlas of Human Anatomy, 6th Edition, Philadelphia, Penn.: Sanders Elsevier, Page 308-12, 316-18. 
  • Kumar, V., Abbas, A., & Aster, J. (2014). Robbins and Cotran Pathologic Basis of Disease, 9th Edition, Philadelphia, PA: Saunders Elsevier, Page 938,940-1 and 943.
  • Sinnatamby, C., & Last, R. (2011). Last's Anatomy, 12th Edition, Edinburgh: Churchill Livingstone/Elsevier, Page 283-285. 

Author and Layout:

  • Lorenzo A. Crumbie
  • Catarina Chaves


  • Renal artery - ventral view - Begoña Rodriguez
  • Anterior branch of renal artery - ventral view - Irina Münstermann
  • Interlobar arteries of kidney - ventral view - Irina Münstermann
  • Interlobular arteries of kidney - ventral view - Irina Münstermann
  • Afferent glomerular arteriole of kidney - histological slide - Smart In Media
  • Vasa recta of kidney - histological slide - Smart In Media
  • Renal vein - ventral view - Begoña Rodriguez
  • Left lesser splanchnic nerve - ventral view - Irina Münstermann
  • Vagus nerve - lateral-left view - Paul Kim
© Unless stated otherwise, all content, including illustrations are exclusive property of Kenhub GmbH, and are protected by German and international copyright laws. All rights reserved.

Register now and grab your free ultimate anatomy study guide!

Sidebar ebook trimmed
Create your free account.
Start learning anatomy in less than 60 seconds.