EN | DE | PT Contact How to study Login Register

Kidneys: want to learn more about it?

Our engaging videos, interactive quizzes, in-depth articles and HD atlas are here to get you top results faster.

Sign up for your free Kenhub account today and join over 1,170,011 successful anatomy students.

“I would honestly say that Kenhub cut my study time in half.” – Read more. Kim Bengochea Kim Bengochea, Regis University, Denver

Kidneys

The kidneys are bilateral organs placed retroperitoneally in the upper left and right abdominal quadrants and are part of the urinary system. Their shape resembles a bean, where we can describe the superior and inferior poles, as well as the major convexity pointed laterally, and the minor concavity pointed medially.

The main function of the kidney is to eliminate excess bodily fluid, salts and byproducts of metabolism – this makes kidneys key in the regulation of acid-base balance, blood pressure, and many other homeostatic parameters.

Key facts about the kidney
Functions Eliminating toxic metabolites through urine, regulation of blood homeostasis and blood pressure, production of some hormones
Morpho-functional characteristics Positioned retroperitoneally, consists of the cortex and medulla, empties urine into the ureter (which carries urine to the urinary bladder)
Artery Renal artery (branch of the abdominal aorta)
Vein Renal vein (drains to the inferior vena cava)
Innervation Renal plexus
Clinical relations Third kidney, horseshoe kidney, kidney agenesis, kidney stones, acute kidney failure

This article will discuss the anatomy and major functions of the kidney.

Functions

The kidney is a very important organ in regards to body homeostasis. It participates in vital processes such as regulation of blood osmolarity and pH, regulation of blood volume and blood pressure, production of hormones, and filtration of foreign substances.

Main kidney functions
Blood pressure regulation Regulates the amount of fluid in the body by increasing or decreasing the urine production
Hormones production

Calcitriol (active form of vitamin D)

Erythropoietin (stimulates bone marrow to produce blood cells)

Acid-base balance regulation Maintain the pH of blood at 7.4 by decreasing or increasing the excretion of hydrogen ions

In general, the amount of blood in the body is 5 liters. Any excessive amount of fluid will increase the pressure on the arterial wall and cause the blood pressure to rise (hypertension). Luckily, the kidneys also feel this increase of pressure, and in cases when this happens, they increase the filtration rate of blood and production of urine, which subsequently leads to the increase fluid excretion and decrease of blood pressure. Of course, if the situation is the other way around (less than 5 liters of blood), blood pressure is too low (hypotension). Hypotension is a stimulus for the kidneys to increase the retention of fluid and thus increase blood pressure.

Besides blood volume and pressure regulation, kidneys also participate in the production of calcitriol (the active form of vitamin D). Also, in situations with notable blood losses, kidneys release a hormone called erythropoietin, which stimulates bone marrow to produce more blood cells.

Cells in our body constantly produce hydrogen ions. An increased amount of hydrogen ions can acidify the blood and cause a state called acidosis. Kidneys have a special system for the excretion of hydrogen ions, and in that way consistently maintain the pH of blood at 7.4. The opposite situation is possible too, if the kidneys excrete too many hydrogen ions, the pH of blood becomes too alkaline, and leads to a state called alkalosis.

This is just a peek into the kidney physiology. In order to understand the functions of the kidney, we must first learn its anatomy.

Anatomy

The kidneys have their anterior and posterior surfaces. The anterior surface faces towards the anterior abdominal wall, whereas the posterior surface is facing the posterior abdominal wall. These surfaces are separated by the edges of the kidney, which are the major convexity laterally, and minor concavity medially. The center of the minor concavity is marked as the hilum of the kidney where the renal artery enters the kidney, and the renal vein and ureter leave the kidney.

The kidneys are positioned retroperitoneally, meaning that they are not wrapped with the peritoneal layers the way most abdominal organs are, but rather are placed behind it. On the other hand, kidneys do have relations with peritoneum, or precisely with the specific organs that are covered with peritoneum which are placed directly adjacent to the kidneys.

Learn more about the anatomy of the kidneys and the urinary system with our urinary system quizzes and labeled diagrams.

External anatomy

If we wanted to examine someone’s kidneys with ultrasound, we definitely must know where to find them. Since they are located deep retroperitoneally, the easiest way to examine them is from the patient’s back. 

The kidneys are located between the transverse processes of T12-L3 vertebrae, with the left kidney typically positioned slightly more superiorly than the right. This is because the liver and the stomach offset the symmetry of the abdomen, with the liver forcing the right kidney a bit down, and the stomach forcing the left kidney a bit up. The superior poles (extremities) (T12) of both kidneys are more medially pointed towards the spine than the inferior poles (extremities) (L3). The hilum of the kidney usually projects at the level of the L2 vertebra. Thus, the ureter is seen paravertebrally starting from the L2 and going downwards.

Kidney structure (overview)

Now let’s pay attention to the borders of the kidneys. A bean-like structure like the kidney has two borders: medial and lateral. The lateral border is directed towards the periphery, while the medial border is the one directed towards the midline. The medial border of the kidney contains a very important landmark called the hilum of the kidney, which is the entry and exit point for the kidney vessels and ureter.

The most superior vessel is the renal vein which exits the kidney, just under it is the renal artery that enters in, and under the artery is the exiting ureter. Alternatively, the anterior to posterior orientation follows the same pattern: renal vein, renal artery and ureter. It is important to remember this order of vessels and ducts since this is the only thing that will make you able to orient the kidney and differentiate the left one from the right when they are outside of the cadaver. 

Kidneys in a cadaver: From superior to inferior and from anterior to posterior, you will find the renal vein, followed by the renal artery, and ending with the ureter.

The kidney tissue is protected by three layers that entirely surround the kidney: 

  • The fibrous capsule (renal capsule)
  • The perinephric fat (perirenal fat capsule)
  • The renal fascia which besides the kidneys also encloses the suprarenal gland and its surrounding fat. 

Outside the fascia is the most superficial layer – a layer of fat tissue called the perinephric fat. This layer sits posteriorly and posterolaterally to each kidney and separates it from the muscles of the abdominal wall. 

Relations

Now that we’ve mastered the borders, it will be easier to take a closer look at the anatomical relations that the kidneys share with other abdominal structures.

Kidneys in situ (overview)

Right kidney anterior surface

After looking at the overview of the kidneys in situ, it may seem as they are cluttered with all abdominal organs. Yet, the relations of the kidneys with other organs are often found in Anatomy tests. For that reason, we got you covered with this topic nicely and concisely. Let’s start with the right kidney anterior surface.

Right kidney relations
Right suprarenal gland Superior pole
Peritoneum Superior one-half of anterior surface
Descending duodenum Center of the anterior surface
Right colic flexure Lateral part of inferior pole
Jejunum Medial part of inferior pole
  • The highest portion of the superior pole is covered with the right suprarenal gland
  • The superior one-half of the anterior surface is in contact with the layer of peritoneum that separates it from the liver. This potential space that separates the liver from the right kidney is called the hepatorenal pouch of Morison. Under normal conditions, this pouch is empty, but certain pathological conditions, such as ascites or hemoperitoneum, can cause fluid to collect within the pouch. This can be visualized with ultrasound or CT.
  • At exactly the center of the anterior surface, imagine a horizontal stripe that extends from the medial concavity toward the center of the lateral convexity – that is the area of the kidney that is directly touched by the retroperitoneal posterior wall of the descending duodenum
  • The lateral part of the inferior pole is directly contacted with the right colic flexure (also known as the hepatic flexure) which is also retroperitoneal at this part
  • The rest of the inferior pole is associated with the peritoneum of the small intestine, more precisely the jejunum

To find out more about the structures related to the anterior portion of the right kidney, check out these articles:

Left kidney anterior surface

Since the abdominal organs are not paired, the left kidney is not related to the same organs as the right kidney.

Key facts about the left kidney relations
Left suprarenal gland Upper one half of superior pole
Stomach Medial part of the lower half of superior pole
Spleen Lateral part of the lower half of superior pole
Pancreas Center of the anterior surface
Splenic flexure of descending colon

Lateral part of inferior half of anterior surface

Jejunum Medial part of inferior half of anterior surface

The anterior surface of the left kidney, has the following anatomical relations:

  • Just like the right kidney, the highest part of the superior pole of the left is also covered with the left suprarenal gland
  • The inferior portion of the superior pole contacts with the peritoneum of the stomach (medially) and spleen (laterally)
  • Just inferior to the stomach and spleen impression, is where the left kidney directly contacts the pancreas
  • The lateral part of the inferior half of the anterior surface is directly associated with the left colic flexure (also known as the splenic flexure) and descending colon
  • The medial part of the inferior half and the inferior pole are contacted by the peritoneum of the jejunum

Learn more about the organs related to the anterior surface of the left kidney through these great articles!

Posterior surface relations

The posterior surfaces of both kidneys share the same associations.

Key facts about posterior surface relations
Diaphragm Superior half
Psoas major muscle Medial third of lower half
Quadratus lumborum muscle Middle third of lower half
Transversus abdominis muscle Lateral third of lower half

The superior half is covered by the diaphragm, which is why the kidneys move up and down during respiration

The inferior half is easy to remember by dividing it into three vertical stripes, where the medial stripe represents the impression of the psoas major muscle, the central stripe the quadratus lumborum, and the lateral stripe the transversus abdominis muscle

Find out everything about these muscles that cover the posterior surfaces of the kidney through these articles and video tutorials!

Internal anatomy

The parenchyma of the kidney consists of the outer renal cortex, and inner renal medulla.

Internal anatomy of the kidney (overview)

The main unit of the medulla is the renal pyramid. There are 8-18 renal pyramids in each kidney, that on the coronal section look like triangles lined next to each other with their bases directed toward the cortex and apex to the hilum. The apex of the pyramid projects medially toward the renal sinus. This apical projection is called the renal papilla and it opens to the minor calyx. The minor calyces unite to form a major calyx. Usually, there are two to three major calyces in the kidney (superior, middle, and inferior), which again unite to form the renal pelvis from which the ureter emerges and leaves the kidney through the hilum. The pyramids are separated by extensions of the cortex called the renal columns.

The pyramids contain the functional units of the kidney, the nephrons, which filter blood in order to produce urine which then is transported through a system of the structures called calyces which then transport the urine to the ureter. So the pyramids represent the functional tissue that creates urine, whereas the calyces are the beginning of the ureter and transport the urine to it.

Nephron

Each time a professor says 'nephron', a student gets a headache. For most of the students, the nephron is a mystical complexed structure that may be hard to understand. It doesn't have to be that way. Let's see what is nephron and how it is structured, so you can remember it for good.

Nephron (overview)

Ultrastructurally, the nephron is the functional representative of the kidney. Each nephron contains a renal corpuscle, which is the initial component that filters the blood, and a renal tubule that processes and carries the filtered fluid to the system of calyces. The renal corpuscle has two components: the glomerular (Bowman’s) capsule in which sits the glomerulus.

The glomerulus is actually a web of arterioles and capillaries, with a special filter which filters the blood that runs through the capillaries, the glomerular membrane. The vessel which brings blood into the glomerulus is the afferent arteriole, whereas the vessel that carries the rest of the blood out that hasn’t been filtered out of the glomerulus is called the efferent arteriole

The glomerular membrane is designed in a way in which it is not permeable for big and important molecules in blood, such as plasma proteins, but it is permeable to the smaller substances such as sodium, potassium, amino acids and many others. It is also permeable for the products of the metabolism, such are creatinine and drug metabolites.

So in the filtered fluid that goes to the renal tubule, we have both necessary and unnecessary substances. Because of this, the tubules are designed in a way that they reabsorb the necessary substances, (sodium, potassium, and amino acids as mentioned before) and carries them back to the blood; whereas they do not absorb but rather secrete unnecessary substances such as creatinine and drug metabolites for excretion from the body.

In this way, the consistency of blood is preserved and no important substances are lost. On the other hand, the products of cellular metabolism and drug metabolites are eliminated from the blood which prevents their depositing in the body and potential toxicity. This is why the kidney is essential for the circulatory hemostasis.

Vasculature and lymphatic drainage

Arteries

Each kidney is supplied by a single renal artery, which is a direct lateral branch of the abdominal aorta. Both renal arteries, left and right, arise just below the superior mesenteric artery, with the left renal artery positioned slightly superiorly to the right one. The left artery has a short way to the left kidney, whereas the right has to go behind the inferior vena cava in order to reach the right kidney. In addition to the renal artery, accessory renal arteries are present too. They are branches of the abdominal aorta and all together are called the extrahilar renal arteries.

Arteries of the kidney (overview)

When the renal arteries enter the kidney through the hilum, they split into anterior and posterior branches. The posterior branch supplies the posterior part of the kidney, whereas the anterior branch arborizes into five segmental arteries, each supplying a different renal segment. The segmental arteries then branch into the interlobar arteries, which further branch into the arcuate arteries. Finally, the arcuate arteries branch into the interlobular arteries which branch off even further by giving afferent arterioles to run blood past the glomerulus for blood filtration. It is notable that the kidney has a very rich blood supply. To learn everything about it, check out this article:

Veins and lymphatics

Each kidney has a single renal vein which conducts the blood out of the kidney and is positioned anterior to the artery. The renal veins empty to the inferior vena cava, so the right vein must be longer because the inferior vena cava is closer to the left kidney. The left renal vein passes anteriorly to the aorta just below the trunk of the superior mesenteric artery, which is risky because it can be compressed by one of those two. Concerning lymphatic drainage, each kidney drains into the lateral aortic (lumbar) lymph nodes, which are placed around the origin of the renal artery.

Note that the left renal vein receives blood from the left suprarenal and left testicular veins. The left testicular vein must ascend higher and it drains to the left renal vein at a right angle, unlike the right testicular vein which joins the inferior vena cava directly. This can cause varicocele of the left testicle because gravity works against the column of the blood in the left testicular vein.

Recommended video: Veins of abdomen and pelvis
Main veins and their tributaries of the abdomen and pelvis.

Furthermore, since the left renal vein passes between the superior mesenteric artery and the abdominal aorta, an enlargement of the superior mesenteric artery can compress the left renal vein and cause an obstruction of drainage from all three structures that use the left renal vein for drainage (left suprarenal gland, left kidney, and left testicle). This significantly affects the testicle, since an obstruction of drainage causes an obstruction of fresh arterial blood inflow, which can result in the infarction of testicular tissue. This specific condition is called the nutcracker phenomenon.
Solidify your knowledge about the renal and abdominal vessels with these great articles and video tutorial.

Innervation

The kidneys are innervated by the renal plexus. This plexus provides input from:

  • the sympathetic nervous system from the lower thoracic splanchnic nerves for the regulation of the vascular tone, and from 
  • the parasympathetic nervous system as well, through the vagus nerve.

The sensory nerves from the kidney travel to the spinal cord at the levels T10-T11, which is why the pain in the flank region always rises suspicions that something is wrong with the corresponding kidney.
Learn more about these systems and their nerves with these fun video tutorial and articles!


 

Clinical relations

Third kidney

There are many clinical states related to kidney malfunction. Some of them are congenital, such as a third kidney, which is usually atrophic. In other cases, both kidneys can be fused, usually at the inferior poles, which is a congenital state called the horseshoe kidney. There is no specific treatment for fused kidneys and the only option is to treat the pathologies that affect them during life.

Renal agenesis

Sometimes, one or both kidneys fail to develop, which causes unilateral or bilateral renal agenesis. People with unilateral agenesis often are unaware that they lack one kidney until an accidental discovery, since the one kidney that they have is able to functionally compensate for the other. On the other hand, babies with bilateral agenesis cannot survive without an immediate kidney transplant.

Kidney stones

Other common kidney conditions are acquired through life, and one of the most common is nephrolithiasis (kidney stones). This refers to the forming of the stones within the system of calyces because of too much calcium or uric acid into the filtrate. The calcium or uric acid will precipitate and form stones. The stones can move into the ureter and literally get stuck there because the lumen of the ureter is much smaller compared to the calyces, which is very painful for the patient. Kidney stones are most often treated by ultrasound shock therapy, during which high-frequency radio waves break the stone into smaller pieces that can be passed naturally into the urine. Other methods include classical surgical removal of the stone, either through the ureter or by open surgery.

Acute kidney failure

Other malfunctions of the kidney are presented through acute kidney failure, a serious and urgent medical condition. It can be caused by a variety of factors, but most often arises because of the ischemia of the kidney and the toxic effect of some medications, resulting in the failure of all kidney functions. We’ve mentioned that the most important functions of the kidney are the regulation of the blood homeostasis and blood pressure, so acute kidney failure can lead to a quick fall of blood pressure which presents as a state of shock.

Kidneys: want to learn more about it?

Our engaging videos, interactive quizzes, in-depth articles and HD atlas are here to get you top results faster.

Sign up for your free Kenhub account today and join over 1,170,011 successful anatomy students.

“I would honestly say that Kenhub cut my study time in half.” – Read more. Kim Bengochea Kim Bengochea, Regis University, Denver

Show references

References:

  • R. L. Drake, A. W. Vogl, A. W. M. Mitchell: Gray’s Anatomy for Students, 3rd edition, Churchill-Livingstone (2018), p. 373-380
  • K. L. Moore, A. F. Dalley II, A. M. R. Agur: Clinically Oriented Anatomy, 7th edition, Lippincott Williams & Wilkins (2014), p. 292

Article, review and layout:

  • Jana Vaskovic
  • Alexandra Osika

Illustrations:

  • Kidney structure (overview) - Mohammed Albakkar
  • Kidneys in situ (overview) - Johannes Reiss
  • Internal anatomy of the kidney (overview) - Mohammed Albakkar
  • Nephron (overview) - Mohammed Albakkar
  • Arteries of the kidney (overview) - Abdulmalek Albakkar
  • Kidneys in a cadaver - Prof. Carlos Suárez-Quian

© Unless stated otherwise, all content, including illustrations are exclusive property of Kenhub GmbH, and are protected by German and international copyright laws. All rights reserved.

Related diagrams and images

Continue your learning

Read more articles

Show 8 more articles

Watch videos

Take a quiz

Browse atlas

Well done!

Register now and grab your free ultimate anatomy study guide!