Connection lost. Please refresh the page.
Get help How to study Login Register
Ready to learn?
Pick your favorite study tool

Arteries and veins of the orbit

Recommended video: Blood vessels of the orbit [13:26]
Arteries and veins of the orbit.

Arteries and veins of the orbit (or eye) are generally thought of as the central retinal artery and retinal vein, in addition to the ophthalmic artery and vein.

However, there are a number of additional ancillary arteries and veins that help support proper structure and functioning of the eyes.

  1. Arteries of the orbit
    1. Ophthalmic artery and branches
    2. Posterior ciliary arteries
    3. Infraorbital artery
  2. Veins of the orbit
    1. Central retinal vein
    2. Ophthalmic veins
    3. Vorticose veins
  3. Vessel occlusion
  4. Sources
+ Show all

Arteries of the orbit

Ophthalmic artery and branches

Our discussion of the arteries and veins will begin with the ophthalmic artery, which is the first branch off of the internal carotid artery distal to the cavernous sinus. Branches of the ophthalmic artery supply all of the structures within the orbit, in addition to other structures found in the nose, face and meninges. In some cases, the ophthalmic artery will branch off just before the internal carotid exits the cavernous sinus.

Ophthalmic artery (lateral-right view)

While this artery usually arises from the internal carotid along the medial length of the anterior clinoid process (part of the sphenoid bone, which gives attachment to the tentorium cerebelli) and runs anteriorly through the optic canal along with and inferolaterally to the optic nerve, it can also pass superiorly to the optic nerve in rare cases. At the posterior third of the orbit cone, the ophthalmic artery will make a sharp turn to run medially along the orbit wall.

The arteries in the paragraphs that follow are branches of the ophthalmic artery.

Central retinal artery

First, the central retinal artery is the first (and one of the smaller) branches of the ophthalmic artery, which runs in the dura mater (meninges) inferior to the optic nerve. When this central retinal artery approaches the globe posteriorly and is roughly 12.5 millimeters (0.5 inches) away, it will take a turn superiorly and penetrate the optic nerve. It then continues along, posterior to the optic nerve, within its dural sheath to enter the eye and supply the inner retinal layers.

Central retinal artery (superior view)

Lacrimal artery

The lacrimal artery is the next branch of the ophthalmic artery that arises as the ophthalmic artery enters the orbit, and runs along the superior edge of the lateral rectus muscle. This is one of the largest branches and the artery functions to supply the lacrimal gland, eyelids and conjunctiva.

Lacrimal artery (lateral-left view)

Posterior ciliary arteries

When the ophthalmic artery turns medially, it branches off into 1 to 5 posterior ciliary arteries (PCA) that will subsequently branch into the long (LPCA) and short (SPCA) posterior ciliary arteries. The LPCA and SPCA perforate the sclera posteriorly near to the optic nerve and macula to supply the posterior uveal tract.

Posterior ciliary arteries (superior view)

Muscular branches

Muscular branches of the ophthalmic artery can arise in one of two ways:

  1. when the ophthalmic artery is continuing medially, the superior and inferior muscular branches can arise from the artery, or
  2. a single trunk from the ophthalmic artery can divide into the superior and inferior branches, which function to supply the extraocular muscles.
Muscular branches of ophthalmic artery (superior view)

Supraorbital artery

As the ophthalmic artery passes superiorly over the optic nerve, the supraorbital artery can branch off from it and will pass anteriorly along the medial border of the superior rectus and levator palpebrae, and then further through to the supraorbital foramen to supply muscles and skin of the forehead.

Supraorbital artery (superior view)

Posterior ethmoidal artery

Upon reaching the medial wall of the orbit where the ophthalmic artery will turn anteriorly again, the posterior ethmoidal artery will enter the nose via the posterior ethmoidal canal and supply the posterior ethmoidal sinuses, and then finally enter the skull to supply the meninges, which helps protect the central nervous system.

Posterior ethmoidal artery (medial view)

Anterior ethmoidal artery

And as the ophthalmic artery process travels anteriorly, it will also branch off into the anterior ethmoidal artery, which enters the nose after traversing the anterior ethmoidal canal and supplies the anterior and middle ethmoidal sinuses, as well as the frontal sinus. The anterior ethmoidal artery will also enter the cranium to supply the meninges.

Anterior ethmoidal artery (medial view)

Palpebral arteries

Moving along, the ophthalmic artery will continue anteriorly into the trochlea, where the medial superior and inferior palpebral arteries will arise and supply the eyelids.

Frontal and dorsal nasal arteries

Finally, the ophthalmic artery will terminate in two branches: the supratrochlear (or frontal) artery and the dorsal nasal artery. Both of these arteries exit the orbit medially to supply the forehead and scalp.

Dorsal nasal artery (lateral-left view)

Infraorbital artery

In close proximity to the orbit, the infraorbital artery branches off the maxillary artery and emerges through the infraorbital foramen, just under the orbit of the eye. The infraorbital artery gives off branches to supply the inferior rectus and inferior oblique muscles, as well as the lacrimal sac.

Infraorbital artery (lateral-left view)

To summarize, the following arteries are associated with the orbit of the eye:

  • the ophthalmic artery
  • internal carotid artery
  • central retinal artery
  • lacrimal artery
  • posterior ciliary arteries
  • muscular branches of the ophthalmic artery
  • supraorbital artery
  • anterior ethmoidal artery
  • posterior ethmoidal artery
  • medial palpebral arteries (superior and inferior)
  • supratrochlear (or frontal) artery
  • dorsal nasal artery
  • infraortibal artery
  • maxillary artery

Veins of the orbit

Central retinal vein

The central retinal vein (retinal vein) is a relatively short vein that runs through the optic nerve, but leaves the optic nerve before arriving at the eyeball. It drains blood from the capillaries of the retina into either the superior ophthalmic vein or into the cavernous sinus directly. Markedly, anatomy of the veins of the orbit of the eye will vary between individuals, and in some cases, the central retinal vein drains into the superior ophthalmic vein, and in other cases it drains directly into the cavernous sinus.

Ophthalmic veins

The ophthalmic veins are the veins that drain the eyes, and can be broken down into the superior ophthalmic vein and the inferior ophthalmic vein.

Inferior ophthalmic vein (lateral-left view)

Vorticose veins

Finally, the vorticose veins, which are clinically known as the vortex veins, drain the ocular choroid. The number of vortex veins varies from 4 to 8 with over half of the normal population having 4 or 5, and in most cases, there is at least one vortex vein in each quadrant of the eye.

Vorticose veins (lateral-left view)

Typically, the entrances to the vortex veins in the outer layer of the choroid (lamina vasculosa) can be observed funduscopically. The vortex veins run posteriorly in the sclera, and exit the eye posterior to the equator. The path of drainage can also vary between the vortex veins, especially since there is usually collateral circulation between the superior and inferior orbital veins.

Arteries and veins of the orbit: want to learn more about it?

Our engaging videos, interactive quizzes, in-depth articles and HD atlas are here to get you top results faster.

What do you prefer to learn with?

“I would honestly say that Kenhub cut my study time in half.” – Read more.

Kim Bengochea Kim Bengochea, Regis University, Denver
© Unless stated otherwise, all content, including illustrations are exclusive property of Kenhub GmbH, and are protected by German and international copyright laws. All rights reserved.

Register now and grab your free ultimate anatomy study guide!