Connection lost. Please refresh the page.
Get help How to study Login Register
Ready to learn?
Pick your favorite study tool

Eukaryotic cell: Structure and organelles

Recommended video: Eukaryotic cell [18:45]
Overview of the cell and its contents.

The cell is the smallest functional unit within a living organism, which can function independently. It is made up of several types of organelles that allow the cell to function and reproduce. There are two general classes of cells that exist: the self-sustaining simple cells known as prokaryotic (bacteria and archaea) and the more complex dependent cells known as eukaryotic. The eukaryotic cells types are generally found in animals, plants, algae, and fungi. For the purpose of this article, the primary focus will be the structure and histology of the animal cell. The major differences between animal and plant cells will be explored as well.

As previously stated, the fundamental components of a cell are its organelles. These organelles are made up of varying combinations of atoms and molecules. The organelles drive different functions of the cell from metabolism, to energy production and subsequently to replication. Cells with particular functions come together to form organs (i.e. lung parenchyma). Organs with interrelated functions work together within a system (i.e. respiratory system). These systems, although of different functions, work in synergy to allow the organism (i.e. human) to survive. Every aspect of a cell is important for it to survive.

Key Facts about Eukaryotic Cells
Definition of a Cell Smallest functional unit within a living organism that can function independently
Types of Cells Prokaryotes (bacteria and archaea) and eukaryotic cells (in animals, plants, algae, and fungi)
Plasma Membrane Phospholipid bilayer (amphipathic, selective permeability), cholesterol, proteins (channels, carriers, receptors)
Endocytosis Phagocytosis (uptake of solids), pinocytosis (uptake of fluid), receptor-mediated endocytosis (uptake controlled by cell surface receptors)
Cytoplasm Semi-solid medium that keeps the organelles suspended and nutrients dissolved within the internal cellular environment
Cytoskeleton Responsible for shape and support, consisting of microtubules, microfilaments, intermediate filaments, cilia, flagella
Ribosomes Protein synthesis, composed of a small and large subunit
Endoplasmic Reticulum Rough - has ribosomes bound to its surface, stores proteins, and is the extension of the nuclear membrane
Smooth - lacks ribosomes, is a collection of independent sacs or a continuation of the rough ER, and synthesizes lipids, steroids, and phospholipids
Golgi Apparatus Protein storage center, divided into cis and trans components
Vesicles Exocytotic (for content that will be expelled), lysosomal (protein digestion and defense), secretory (for a regulated expulsion of content in response to a stimulus)
Mitochondria Energy (ATP) production, consisting of an outer membrane, inner membrane, and an intermembrane space
Nucleus Consists of chromatin (heterochromatin, euchromatin) which is made up of DNA wrapped around histone proteins
Nuclear Envelope Lipid bilayer surrounding the nucleus that has nuclear pores.
Animal vs Plant Cells Shape - animal cells are irregular, plant cells are rectangular
Cellulose - absent in animal cells, surrounds the plasma membrane in plant cells
ATP production - mitochondria in animal cells, chloroplasts in plant cells
Cillia - present in animal cells, absent in plant cells
Clinical Apoptosis, hyperplasia, hypertrophy, metaplasia, dysplasia
  1. Plasma (cell) membrane
    1. Phospholipid component
    2. Protein component
    3. Material uptake
  2. Cytoplasm
  3. Ribosomes
  4. Endoplasmic reticulum
  5. Golgi apparatus
  6. Vesicles and lysosomes
  7. Mitochondria
  8. Nucleus
  9. Nuclear envelope
  10. Differences between animal and plant cells
  11. Clinical significance
    1. Cell death
    2. Cellular changes
  12. Sources
+ Show all

Plasma (cell) membrane

Phospholipid component

The plasma membrane is the outermost layer of the cell. The main function of the plasma membrane is to protect the cell from its environment. It is often referred to as a fluid mosaic phospholipid bilayer that is hydrophilic externally and internally, but hydrophobic at its core. The hydrophilic property arises from the charged phosphate molecule that forms the head of the phospholipid, and the hydrophobic nature is from the two lipid tails which forms the core. This feature allows the selective permeability of the membrane. For instance, particles that are hydrophilic (e.g. ions) are not able to pass through the hydrophobic core, and those that are hydrophobic (e.g. fats) are repelled from the outer surface. As a result, the cell is able to isolate its internal environment from the external environment.

Cell membrane

Some of the phospholipid structures are bonded to cholesterol molecules. Latter maintain the consistency of the plasma membrane and newer studies explore its role in also supporting the immune system.

Protein component

Like any living organism, the cell is not completely self-sufficient and consequently will require nutrients from the external environment and also to export its products to the external environment. The controlled movement of substance is done by protein channels and carrier proteins anchored in the plasma membrane that selectively or generally allow particular particles to enter and leave the cell.

Some protein molecules are tagged with glycogen chains (i.e. glycoproteins) and function as receptor channels that initiate cellular processes. Other proteins are restricted to either the cytosolic (intracellular protein) or extracellular face (extracellular protein) of the membrane, while others span the entire membrane (transmembrane proteins). This is the rationale behind the term “fluid mosaic”, as it refers to the fact that the proteins located in or on the membrane move freely throughout the phospholipid bilayer.

Plasma membrane

Material uptake

In the case of substances that can neither pass through the membrane or use membrane channels, the plasma membrane has the ability to engulf foreign material in a process known as endocytosis. This process involves recognition of either foreign microorganisms or native substances by receptors on the cell membrane and subsequent folding of that region of the membrane around the intended structure being transported into the cytoplasm. Endocytosis can be further subdivided into three types.

Phagocytosis involves the intake of nonspecific substances (usually solid) into the cell. Pinocytosis involves the intake of specific substances (usually extracellular fluid) into the cell. Receptor-mediated endocytosis involves the specific uptake of certain macromolecules which is controlled by cell surface receptors.


The semi-solid medium that keeps the organelles suspended and nutrients dissolved within the internal cellular environment is the cytoplasm. In addition to the organelles, the cytoplasm also contains microfilaments, microtubules and secretory granules. The microfilaments and microtubules are a part of the cellular architecture that helps give the cell its structure (cytoskeleton) and play a role in cell replication. They also contribute to the formation of cilia and flagella in some cell lines that require motility.


In order for cells to grow and replicate, they must produce the necessary building blocks to achieve this feat. Additionally, some cells – like the β-cells of the pancreas – produce protein based hormones to help maintain homeostasis. This process is achieved by ribosomes. Ribosomes are complex ribonucleic acid based molecules (i.e. ribosomal-ribonucleic acid; r-RNA) that are responsible for translating coded sequences of the messenger-RNA (m-RNA) to proteins. They are made up of a small and a large subunit which coordinate with each other to translate the m-RNA strand. Some ribosomes are membrane bound, while others float freely in the cytoplasm. While free ribosomes synthesize proteins that are used within the cell, the proteins synthesized by bound ribosomes are meant to be exported.


Endoplasmic reticulum

There are clusters of sacs and vesicles that form cisternae (tubules) within the cytoplasm. These structures make the endoplasmic reticulum. There are two types of endoplasmic reticulum: one that has ribosomes bound to its surface - rough endoplasmic reticulum (RER), while the other lacks ribosomes - smooth endoplasmic reticulum (SER).

Another distinguishing feature between rough and smooth endoplasmic reticulum is that rough endoplasmic reticulum is an extension of the nuclear membrane, while the smooth endoplasmic reticulum may either be an independent collection of sacs, or a continuation of the rough endoplasmic reticulum. As previously stated, the rough endoplasmic reticulum stores protein that was synthesized by the ribosomes on its surface. In contrast, the smooth endoplasmic reticulum synthesizes phospholipids, steroids, and lipids, which are subsequently used in steroid based hormone synthesis.

Golgi apparatus

Named after the Italian scientist that discovered it in 1898, Camillo Golgi, this organelle exists within the cytoplasm as a storage center for proteins that will be distributed to other sites. The Golgi apparatus (also referred to as the Golgi complex or Golgi body) is structurally subdivided into cis and trans components. The former represents flattened incoming vesicles from the endoplasmic reticulum that fuse to form cisternae. The trans aspect of the structure is the region from which vesicles bud off to join other vesicles, lysosome or the cell surface (to be exocytosed).

Golgi apparatus

Vesicles and lysosomes

Some proteins synthesised within the cell are utilized by the cell, while others are intended for export to other areas of the body. To prevent these products from being activated and interacting unintentionally with the cell of origin, they are stored in membrane bound sacs called vesicles. There are three general types of vesicles; exocytotic, lysosomal and secretory vesicles. The exocytotic vesicles contain proteins that will be expelled from the cell via exocytosis. This occurs when the vesicles fuse with the cytoplasmic membrane and expel its contents into the extracellular space. For example,  the release of antibodies from activated B-cells during the humoral immune response.

Proteins housed in secretory vesicles are also for extracellular release but require a stimulus; the release of a neurotransmitter named acetylcholine (ACh) from the telodendria of neurons into the synaptic cleft following stimulation by an action potential.


On the other hand, proteases are enzymes designed to digest protein. These are special proteins that are involved in cellular degradation in an apoptotic (programmed cell death) fashion or as part of the defence mechanism against invading pathogens. In either case, these enzymes are stored in the lysosomes for subsequent release. When there is an organelle, cell or microorganism to be digested, a vesicle forms around the substance to be dissolved and subsequently fuses with the lysosome. This is done to prevent unintended damage to other cytoplasmic structures.


Often referred to as the “powerhouse” of the cell, the mitochondria (s. mitochondrion) is an elongated, double membrane structure with numerous cristae within its inner membrane. In addition to the membrane bound ATP synthase proteins that facilitate ATP production, mitochondria are the only organelles that contain their own DNA material and is therefore capable of replication.


The outer membrane that envelops the entire organelle is equipped with prion proteins that allow the selective uptake size of some substances. The inner membrane also has specific proteins such as ATP synthase (makes ATP), cytochrome C (performs oxidation-reduction reactions) and transport proteins (for selective uptake of material into the mitochondrial matrix). The constituents of the intermembrane space (between the inner and outer membranes) are very similar to those in the cytoplasm of the cell.

The matrix is the site at which the citric acid cycle (Krebs cycle - process in ATP formation) occurs. The number of mitochondria found within a particular cell is dependent on its function. For example, cardiac myocytes contain more mitochondria than epithelial cells of the skin because they require more ATP to make them resistant to fatigue.


This is the largest structure within the cell. It is circumscribed by the nuclear envelope and contains a nucleolus, matrix, and most importantly, the hereditary genetic material known as deoxyribonucleic acid (DNA). There is approximately two meters of microscopic genetic material within each cell. This immense volume of DNA is able to be held within the cell by tightly coiling it around histones (proteinaceous scaffold) that are subsequently stacked as chromosomes. However, DNA only exists as chromosomes during the active stages of cellular division. When the cell is in the growth phase, the DNA takes the form of either euchromatin or heterochromatin. DNA that takes the euchromatic form is usually more frequently transcribed and expressed by the cell.

Within the nucleus is a unique region known as the nucleolus. This is an area where DNA that codes for ribosomal RNA (or tandem repeats) is found. The primary function is to make and assimilate r-RNA that will be exported to the cytoplasm to translate m-RNA.

Nuclear envelope

There is another selectively permeable membrane that separates the nucleus cellular cytoplasm from the nuclear matrix. This structure is known as the nuclear envelope; like the plasma membrane, it is also made of a lipid bilayer. It is a double layered structure that encircles the nucleolus and the chromatin within the nuclear matrix. The nuclear envelope is continuous with the rough endoplasmic reticulum.

Now you've finished learning about the structure of the cell, use our diagrams and cell quizzes to consolidate your knowledge! 

In some areas of the envelope the inner and outer layers merge, forming openings known as nuclear pores. Not only do nuclear pores allow nucleotides and other materials to enter the nucleus, but they also allow m-RNA to leave the nucleus for translation in the cytoplasm.

Differences between animal and plant cells

For completion, it should be noted that animal cells are not the only eukaryotic type of cell that exists. Plant cells are also eukaryotic and have components that are similar to those in animal cells. However, there are some significant differences. While animal cells are more irregular in shape, plant cells are often of a fixed rectangular shape. This fixed form is facilitated by the rigid cellulose-based cell wall that surrounds the plasma membrane of the plant cell; which is also absent in animal cells.

In addition to having mitochondria to produce ATP, plant cells also contain chloroplasts. These structures allow plants to utilize ultraviolet energy in the process of photosynthesis to produce their own food. Finally, while a wide variety of animal cells may be equipped with cilia, these structures are often missing from most types of plant cells.

Eukaryotic cell: Structure and organelles: want to learn more about it?

Our engaging videos, interactive quizzes, in-depth articles and HD atlas are here to get you top results faster.

What do you prefer to learn with?

“I would honestly say that Kenhub cut my study time in half.” – Read more.

Kim Bengochea Kim Bengochea, Regis University, Denver
© Unless stated otherwise, all content, including illustrations are exclusive property of Kenhub GmbH, and are protected by German and international copyright laws. All rights reserved.

Register now and grab your free ultimate anatomy study guide!