German Contact Help Login Register

Alveoli

Contents

Anatomy

Alveolus (singular) is the word used for hollow cavities in anatomy. Consequently, there are different types of alveoli (plural) found throughout the human body. However, alveoli are usually used to describe the small air sacs of the lungs of mammals, and are therefore known more specifically as the pulmonary alveoli. The pulmonary alveolus is a sac roughly 0.2 to 0.5 mm in diameter. These alveoli are located at the ends of air passageways in the lungs. Sometimes, people compare alveoli structures to the appearance of a raspberry or a “bunch of grapes.”

In the average adult lung, there is an average of 480 million alveoli (with a range of 274-790 million, coefficient of variation: 37%; although this number varies depending on total lung volume), with a total average surface area of around 75 square meters. Each alveolus is in turn surrounded by a nest of blood capillaries supplied by small branches of the pulmonary artery. A respiratory membrane creates the barrier between alveolar air and blood, and this membrane consists only of the squamous alveolar cell, squamous endothelial cell of the capillary, and their shared basement membrane. Membranes have a total thickness of only 0.5-micrometers, in contrast to the 7.5-micrometer diameter of the erythrocytes (blood cells) that pass through the capillaries.

The major cell type found on the alveolar surface, covering about 95% of the surface area, are thin, broad cells known as squamous (type I) alveolar cells. The thin walls of these cells allow for rapid gas diffusion between the air and blood, and therefore allow for gas exchange to occur. The other 5% of the surface area of an alveolus is covered by round to cuboidal great (type II) alveolar cells. Although type II alveolar cells cover less surface area, they greatly outnumber the squamous alveolar cells.

The type II alveolar cells have two functions: (1) to repair the alveolar epithelium when squamous cells are damaged, and (2) to secrete pulmonary surfactant. Surfactant is composed of phospholipids and protein, and coats the alveoli and smallest bronchioles, which prevents the pressure buildup from collapsing the alveoli when one exhales. Without surfactant, the walls of a deflating alveolus would tend to cling together like sheets of wet paper, and it would be very difficult to re-inflate them on the next inhalation.

However, the most numerous of all cells in the lung are the alveolar macrophages (dust cells), which drift through the alveolar lumens and the connective tissue between them clearing up debris through phagocytosis. These macrophages “eat” the dust particles that escape from mucus in the higher parts of the respiratory tract, as well as other debris that is not trapped and cleared out by your mucus. If your lungs are infected or bleeding, the macrophages also function to phagocytize bacteria and loose blood cells. At the end of each day, as many as 100 million of these alveolar macrophages will expire as they ride up the mucociliary escalator to be swallowed at the esophagus and digested—this is how debris from the lungs is removed.

Lungs
Recommended video: Lungs
Overview of the anatomy of the lungs.

Function

When a breath is taken during inhalation, the concentration of the incoming oxygen is higher in the alveolus than in the red blood cells. For this reason, oxygen will leave the alveolus and enter the red blood cells.

During exhalation, the opposite occurs. The concentration of carbon dioxide is lower in the alveolus than in the red blood cells, thus, carbon dioxide leaves the red blood cell, enters the alveolus, and is exhaled.

Since gases are constantly required physiologically and produced are as a by-product of cellular and metabolic processes in the body, an efficient system for their exchange is extremely important. Respiration therefore serves an important regulatory role in gas exchange. To give an example, metabolic changes in patients with diabetic ketoacidosis (DKA) ultimately result in changes in respiration patterns. This is because DKA will result in metabolic acidosis, where the body will initially buffer the change with the bicarbonate buffering system. However, once the body is overwhelmed and can no longer compensate for the acidosis, one compensatory mechanism is then hyperventilation, in order to lower the blood carbon dioxide levels by blowing off the carbon dioxide through exhalation (extreme forms of this hyperventilation are known as Kussmaul respiration).

Get me the rest of this article for free
Create your account and you’ll be able to see the rest of this article, plus videos and a quiz to help you memorize the information, all for free. You’ll also get access to articles, videos, and quizzes about dozens of other anatomy systems.
Create your free account ➞
Show references

References:

  • Anne M Gilroy, Brian R MacPherson, Lawrence M Ross and Michael Schuenke, Atlas of Anatomy, 2nd edition, Thieme.
  • Kenneth Saladin, Anatomy & Physiology: The Unity of Forma and Function, 6th edition, McGraw-Hill Science/Engineering/Math.
  • Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJ: The number of alveoli in the human lung. Am J Respir Crit Care Med. 2004 Jan 1;169(1):120-4.

Author:

  • Alice Ferng, MD-PhD

Illustrators:         

  • Lungs (green) - Yousun Koh 
© Unless stated otherwise, all content, including illustrations are exclusive property of Kenhub GmbH, and are protected by German and international copyright laws. All rights reserved.

Continue your learning

Article (You are here)
Other articles
Well done!
Create your free account.
Start learning anatomy in less than 60 seconds.